Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# *tert*-Butyl *N*-[(*S*)-3-isobutyl-2-oxooxetan-3-yl]carbamate

## Lesław Sieroń,<sup>a</sup>\* Adam Kudaj,<sup>b</sup> Aleksandra Olma<sup>b</sup> and Janina Karolak-Wojciechowska<sup>a</sup>

<sup>a</sup>Institute of General & Ecological Chemistry, Technical University of Łódź, Żeromskiego 116, 90-924 Łódź, Poland, and <sup>b</sup>Institute of Organic Chemistry, Technical University of Łódź, Żeromskiego 116, 90-924 Łódź, Poland Correspondence e-mail: Isieron@p.lodz.pl

Received 15 November 2007; accepted 27 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.010 Å; R factor = 0.046; wR factor = 0.118; data-to-parameter ratio = 7.7.

The structure of the title compound,  $C_{12}H_{21}NO_4$ , contains two crystallographically independent molecules in the asymmetric unit. Molecules are linked into pseudosymmetric  $R_2^2(8)$  dimers through two N-H···O hydrogen bonds. The dimers are connected by weak C-H···O interactions, resulting in a three-dimensional network.

#### **Related literature**

For related literature, see: Etter *et al.* (1990); Olma (2004); Olma & Kudaj (2005); Pansare *et al.* (1991); Smith & Goodman (2003); Yang & Romo (1999).



b = 11.2018 (16) Å

c = 11.6915 (14) Å

 $\alpha = 115.936 \ (14)^{\circ}$ 

 $\beta = 100.621 (10)^{\circ}$ 

#### **Experimental**

| Crystal data       |  |
|--------------------|--|
| $C_{12}H_{21}NO_4$ |  |
| $M_r = 243.30$     |  |
| Triclinic, P1      |  |
| a = 6.1642 (7)  Å  |  |
|                    |  |

 $\gamma = 95.362 (11)^{\circ}$   $V = 699.58 (19) \text{ Å}^3$  Z = 2Mo  $K\alpha$  radiation

#### Data collection

KUMA KM4CCD diffractometer Absorption correction: none 7367 measured reflections

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$  $wR(F^2) = 0.118$ S = 0.962451 reflections 317 parameters  $\mu = 0.09 \text{ mm}^{-1}$  T = 293 K $0.25 \times 0.20 \times 0.10 \text{ mm}$ 

2451 independent reflections 1367 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.032$ 

3 restraints H-atom parameters constrained  $\begin{array}{l} \Delta \rho_{max} = 0.12 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{min} = -0.12 \text{ e } \text{\AA}^{-3} \end{array}$ 

Table 1Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$        | $D-{\rm H}$ | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-------------------------|-------------|--------------|--------------|--------------------------------------|
| N8−H8···O29             | 0.86        | 2.12         | 2.937 (6)    | 158                                  |
| N28-H28···O9            | 0.86        | 2.06         | 2.890 (6)    | 162                                  |
| C12−H12C···O9           | 0.96        | 2.55         | 3.049 (9)    | 112                                  |
| C13−H13A···O9           | 0.96        | 2.36         | 2.941 (11)   | 118                                  |
| $C27 - H27C \cdots O22$ | 0.96        | 2.53         | 3.209 (9)    | 127                                  |
| C32−H32 <i>C</i> ···O29 | 0.96        | 2.44         | 3.018 (9)    | 119                                  |
|                         |             |              |              |                                      |

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2007); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2007); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *POV-RAY* (Persistence of Vision, 2004); software used to prepare material for publication: *PLATON* (Spek, 2003).

This work was supported partly by the Ministry of Scientific Research and Information Technology (grant No. T09A 167 22).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2209).

#### References

- Bruker (2000). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Olma, A. (2004). Pol. J. Chem. 78, 8312–8315.
- Olma, A. & Kudaj, A. (2005). Tetrahedron Lett. 46, 6239-6241.
- Oxford Diffraction (2007). *CrysAlis CCD* and *CrysAlis RED*. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Pansare, S. V., Hunter, G., Arnold, L. D. & Vaderas, C. J. (1991). Org. Synth. 70, 1–9.
- Persistence of Vision (2004). POV-RAY. Persistence of Vision Pty. Ltd, Williamstown, Victoria, Australia.
- Smith, N. D. & Goodman, M. (2003). Org. Lett. 5, 1035-1037.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Yang, H. W. & Romo, D. (1999). Tetrahedron, 55, 6403-6434.

Acta Cryst. (2008). E64, o207 [doi:10.1107/S1600536807063866]

#### tert-Butyl N-[(S)-3-isobutyl-2-oxooxetan-3-yl]carbamate

#### L. Sieron, A. Kudaj, A. Olma and J. Karolak-Wojciechowska

#### Comment

The discovery of a significant number of natural 2-oxetanones with very interesting biological activities has attracted much attention towards the preparation and its use as a synthetic intermediate (Yang & Romo, 1999). *N*-Protected- $\alpha$ -amino- $\beta$ -lactones are useful intermediates for synthesis of  $\beta$ -substituted alanines *via* ring opening by various nucleophiles (Pansare *et al.*, 1991). Reactions of *N*-Boc- $\alpha$ -alkylserine  $\beta$ -lactones with soft sulfur nucleophiles (Olma, 2004) or with sodium azide (Olma & Kudaj, 2005) yield potentially interesting building blocks for medicinal chemistry.

As part of out studies in this area, we report here the crystal structure of the title compound, (I). In the crystal structure of (I) the asymmetric unit is composed of two molecules. Pairs of these molecules are connected into pesudocentrosymmetric dimers *via* N–H···N hydrogen bonds, forming eight-membered rings described by the  $R_2^2(8)$  graph-set motif (Etter *et al.*, 1990) (Fig. 1). The same motif with comparable bond lengths is also observed in the structure of  $\alpha$ -methyl analog (Smith & Goodman, 2003). The molecules in (I) differ mainly in the orientation of isobutyl substituents (Fig. 2), as indicated by torsion angles of -172.2 (6) and 85.9 (7)° for C2–C3–C5–C6 and C22–C23–C25–C26, respectively.

#### **Experimental**

The title compound was synthesized by treating complex of triphenylphosphine (525 mg, 2 mmol) and diethyldiazadicarboxylate in dry tetrahydrofurane with solution of Boc-(*S*)-*iso*-butylserine (*N*-Boc-(*S*)- $\alpha$ -hydroxymethylleucine) in dry THF (698 mg, 2 mmol) at 0°C. After stirring 1 hr at 0°C and then 16 hrs at room temperature, THF was removed *in vacuo* and the crude product was purified by flash chromatography on silica gel 60 (230–400 mesh), using ethyl acetate-*n*-hexane (1:1) as eluent. The *N*-Boc-(*S*)- $\alpha$ -benzylserine lactone was obtained in 95% yield. White crystals of (I) suitable for X-ray investigation were grown from chloroform.

#### Refinement

In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration was assigned consistent with the starting material. All H atoms were included in calculated positions and treated as riding, C-H = 0.96-0.98 and N-H = 0.86 Å with  $U_{iso}(H) = 1.2$  or  $1.5U_{eq}(C)$  and  $1.2U_{eq}(N)$ .

Figures



Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atomnumbering scheme. Dotted lines indicate hydrogen bonds.

Fig. 2. A least-squares overlay of the two independent molecules of (I), fitting on the central eight atoms. H atoms have been omitted.

#### tert-Butyl N-[(S)-3-isobutyl-2-oxooxetan-3-yl]carbamate

| <i>Z</i> = 2                                 |
|----------------------------------------------|
| $F_{000} = 264$                              |
| $D_{\rm x} = 1.155 {\rm Mg} {\rm m}^{-3}$    |
| Melting point: 382-383 K                     |
| Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Cell parameters from 4065 reflections        |
| $\theta = 3.4 - 26.0^{\circ}$                |
| $\mu = 0.09 \text{ mm}^{-1}$                 |
| T = 293  K                                   |
| Rectangular plate, colourless                |
| $0.25\times0.20\times0.10\ mm$               |
|                                              |

#### Data collection

| KUMA KM4CCD<br>diffractometer                       | 1367 reflections with $I > 2\sigma(I)$ |
|-----------------------------------------------------|----------------------------------------|
| Monochromator: graphite                             | $R_{\rm int} = 0.032$                  |
| Detector resolution: 8.2356 pixels mm <sup>-1</sup> | $\theta_{max} = 25.0^{\circ}$          |
| T = 293  K                                          | $\theta_{\min} = 3.4^{\circ}$          |
| ω scans                                             | $h = -7 \rightarrow 7$                 |
| Absorption correction: none                         | $k = -13 \rightarrow 12$               |
| 7367 measured reflections                           | $l = -13 \rightarrow 13$               |
| 2451 independent reflections                        |                                        |

Refinement

| Refinement on $F^2$                                            | Hydrogen site location: difference Fourier map                           |
|----------------------------------------------------------------|--------------------------------------------------------------------------|
| Least-squares matrix: full                                     | H-atom parameters constrained                                            |
| $R[F^2 > 2\sigma(F^2)] = 0.046$                                | $w = 1/[\sigma^2(F_o^2) + (0.062P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| $wR(F^2) = 0.118$                                              | $(\Delta/\sigma)_{max} < 0.001$                                          |
| <i>S</i> = 0.96                                                | $\Delta \rho_{max} = 0.12 \text{ e} \text{ Å}^{-3}$                      |
| 2451 reflections                                               | $\Delta \rho_{min} = -0.12 \text{ e } \text{\AA}^{-3}$                   |
| 317 parameters                                                 | Extinction correction: none                                              |
| 3 restraints                                                   |                                                                          |
| Primary atom site location: structure-invariant direct methods |                                                                          |

#### Special details

ect methods

Secondary atom site location: structure-invariant dir-

**Geometry**. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement on  $F^2$  for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The observed criterion of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating -R-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x           | У           | Ζ           | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|-------------|-------------|-------------|---------------------------|
| 01  | 1.4399 (10) | 0.1757 (5)  | 0.4830 (5)  | 0.109 (2)                 |
| O2  | 1.1035 (11) | 0.2386 (5)  | 0.4645 (6)  | 0.142 (3)                 |
| O9  | 1.1871 (6)  | 0.1402 (4)  | 0.0465 (4)  | 0.0732 (16)               |
| O10 | 1.4040 (5)  | 0.2338 (4)  | 0.2538 (3)  | 0.0632 (12)               |
| N8  | 1.1595 (7)  | 0.0423 (5)  | 0.1767 (4)  | 0.0608 (17)               |
| C2  | 1.2281 (16) | 0.1651 (7)  | 0.4225 (7)  | 0.094 (4)                 |
| C3  | 1.2177 (8)  | 0.0381 (6)  | 0.3000 (5)  | 0.056 (2)                 |
| C4  | 1.4709 (10) | 0.0600 (7)  | 0.3684 (7)  | 0.080 (3)                 |
| C5  | 1.0644 (10) | -0.0818 (6) | 0.2932 (6)  | 0.065 (2)                 |
| C6  | 1.0612 (10) | -0.2220 (6) | 0.1830 (6)  | 0.071 (2)                 |
| C7  | 1.2908 (11) | -0.2562 (7) | 0.1790 (6)  | 0.084 (3)                 |
| C8  | 0.9089 (13) | -0.3259 (7) | 0.1990 (9)  | 0.116 (4)                 |
| C9  | 1.2485 (9)  | 0.1394 (6)  | 0.1522 (6)  | 0.057 (2)                 |
| C11 | 1.5447 (9)  | 0.3418 (6)  | 0.2464 (6)  | 0.0630 (19)               |
| C12 | 1.6836 (12) | 0.2758 (8)  | 0.1487 (7)  | 0.108 (3)                 |
| C13 | 1.4015 (13) | 0.4276 (8)  | 0.2093 (10) | 0.129 (4)                 |

| C14  | 1.6964 (11) | 0.4200 (7)  | 0.3820 (7)  | 0.093 (3)   |
|------|-------------|-------------|-------------|-------------|
| O21  | 0.5614 (6)  | -0.1756 (4) | -0.4839 (4) | 0.0800 (16) |
| O22  | 0.3389 (6)  | -0.0513 (4) | -0.3675 (4) | 0.0866 (16) |
| O29  | 0.7503 (6)  | -0.1196 (4) | -0.0326 (4) | 0.0771 (17) |
| O30  | 0.5507 (5)  | -0.2205 (4) | -0.2453 (3) | 0.0622 (16) |
| N28  | 0.8048 (6)  | -0.0325 (4) | -0.1694 (4) | 0.0567 (17) |
| C22  | 0.5175 (10) | -0.0792 (7) | -0.3759 (6) | 0.066 (3)   |
| C23  | 0.7590 (8)  | -0.0328 (6) | -0.2933 (6) | 0.052 (2)   |
| C24  | 0.7917 (9)  | -0.1606 (6) | -0.4128 (6) | 0.071 (2)   |
| C25  | 0.8812 (9)  | 0.0973 (5)  | -0.2828 (6) | 0.058 (2)   |
| C26  | 0.8569 (10) | 0.2326 (6)  | -0.1764 (6) | 0.067 (2)   |
| C27  | 0.6166 (11) | 0.2527 (7)  | -0.1836 (7) | 0.091 (3)   |
| C28  | 1.0010 (13) | 0.3476 (7)  | -0.1818 (8) | 0.104 (3)   |
| C29  | 0.7063 (9)  | -0.1247 (6) | -0.1397 (6) | 0.055 (2)   |
| C31  | 0.3953 (9)  | -0.3211 (6) | -0.2350 (6) | 0.063 (2)   |
| C32  | 0.2568 (11) | -0.2483 (9) | -0.1438 (8) | 0.107 (3)   |
| C33  | 0.5216 (11) | -0.4104 (8) | -0.1981 (9) | 0.108 (3)   |
| C34  | 0.2499 (10) | -0.3999 (7) | -0.3762 (6) | 0.091 (3)   |
| H4A  | 1.50880     | -0.01380    | 0.38540     | 0.0960*     |
| H4B  | 1.57410     | 0.08380     | 0.32490     | 0.0960*     |
| H5A  | 1.10960     | -0.08350    | 0.37640     | 0.0780*     |
| H5B  | 0.91190     | -0.06560    | 0.28400     | 0.0780*     |
| Н6   | 0.99370     | -0.22450    | 0.09910     | 0.0850*     |
| H7A  | 1.36120     | -0.25310    | 0.26080     | 0.1260*     |
| H7B  | 1.38140     | -0.19170    | 0.16490     | 0.1260*     |
| H7C  | 1.27650     | -0.34540    | 0.10860     | 0.1260*     |
| H8   | 1.05900     | -0.02320    | 0.11360     | 0.0730*     |
| H8A  | 0.90490     | -0.41500    | 0.13110     | 0.1740*     |
| H8B  | 0.75960     | -0.30710    | 0.19250     | 0.1740*     |
| H8C  | 0.96630     | -0.32100    | 0.28330     | 0.1740*     |
| H12A | 1.74390     | 0.20690     | 0.16460     | 0.1610*     |
| H12B | 1.80490     | 0.34300     | 0.15920     | 0.1610*     |
| H12C | 1.58960     | 0.23580     | 0.06080     | 0.1610*     |
| H13A | 1.30920     | 0.37430     | 0.12130     | 0.1930*     |
| H13B | 1.49690     | 0.50330     | 0.21410     | 0.1930*     |
| H13C | 1.30720     | 0.45980     | 0.26880     | 0.1930*     |
| H14A | 1.60960     | 0.43350     | 0.44550     | 0.1400*     |
| H14B | 1.76670     | 0.50620     | 0.39410     | 0.1400*     |
| H14C | 1.80990     | 0.37030     | 0.39360     | 0.1400*     |
| H24A | 0.90530     | -0.14110    | -0.45310    | 0.0860*     |
| H24B | 0.81610     | -0.23510    | -0.39400    | 0.0860*     |
| H25A | 0.83120     | 0.09650     | -0.36690    | 0.0700*     |
| H25B | 1.04040     | 0.09470     | -0.27000    | 0.0700*     |
| H26  | 0.91720     | 0.23590     | -0.09120    | 0.0800*     |
| H27A | 0.55490     | 0.25370     | -0.26470    | 0.1370*     |
| H27B | 0.61350     | 0.33720     | -0.11110    | 0.1370*     |
| H27C | 0.52870     | 0.17990     | -0.17940    | 0.1370*     |
| H28  | 0.90560     | 0.03320     | -0.10670    | 0.0680*     |
| H28A | 0.94980     | 0.34450     | -0.26590    | 0.1560*     |
|      |             |             |             |             |

| H28B | 1.15540 | 0.33770  | -0.16910 | 0.1560* |
|------|---------|----------|----------|---------|
| H28C | 0.98850 | 0.43280  | -0.11380 | 0.1560* |
| H32A | 0.14490 | -0.31310 | -0.14260 | 0.1600* |
| H32B | 0.18430 | -0.19110 | -0.17350 | 0.1600* |
| H32C | 0.35230 | -0.19400 | -0.05690 | 0.1600* |
| H33A | 0.63820 | -0.43120 | -0.24390 | 0.1630* |
| H33B | 0.42080 | -0.49270 | -0.22130 | 0.1630* |
| H33C | 0.58780 | -0.36520 | -0.10510 | 0.1630* |
| H34A | 0.34100 | -0.44600 | -0.43350 | 0.1370* |
| H34B | 0.18640 | -0.33820 | -0.40280 | 0.1370* |
| H34C | 0.13090 | -0.46490 | -0.38080 | 0.1370* |
|      |         |          |          |         |

### Atomic displacement parameters $(Å^2)$

|     | $U^{11}$  | $U^{22}$  | $U^{33}$   | $U^{12}$   | $U^{13}$   | $U^{23}$  |
|-----|-----------|-----------|------------|------------|------------|-----------|
| 01  | 0.150 (5) | 0.095 (4) | 0.059 (3)  | -0.023 (3) | -0.016 (3) | 0.040 (3) |
| O2  | 0.215 (6) | 0.089 (3) | 0.128 (4)  | 0.045 (4)  | 0.085 (4)  | 0.038 (3) |
| 09  | 0.078 (2) | 0.077 (3) | 0.055 (3)  | -0.016 (2) | -0.014 (2) | 0.040 (2) |
| O10 | 0.064 (2) | 0.063 (2) | 0.052 (2)  | -0.014 (2) | -0.005 (2) | 0.030 (2) |
| N8  | 0.066 (3) | 0.060 (3) | 0.055 (3)  | -0.011 (2) | -0.008 (2) | 0.039 (3) |
| C2  | 0.149 (8) | 0.068 (5) | 0.081 (6)  | 0.021 (5)  | 0.033 (5)  | 0.048 (4) |
| C3  | 0.070 (4) | 0.058 (4) | 0.037 (3)  | 0.007 (3)  | 0.006 (3)  | 0.024 (3) |
| C4  | 0.091 (5) | 0.077 (4) | 0.071 (4)  | 0.000 (4)  | -0.007 (3) | 0.048 (4) |
| C5  | 0.077 (4) | 0.070 (4) | 0.066 (4)  | 0.014 (3)  | 0.023 (3)  | 0.046 (4) |
| C6  | 0.080 (4) | 0.064 (4) | 0.071 (4)  | 0.006 (3)  | 0.005 (3)  | 0.040 (4) |
| C7  | 0.112 (5) | 0.079 (4) | 0.073 (4)  | 0.032 (4)  | 0.028 (4)  | 0.042 (4) |
| C8  | 0.125 (6) | 0.072 (4) | 0.158 (8)  | -0.008 (4) | 0.036 (5)  | 0.064 (5) |
| C9  | 0.050 (3) | 0.068 (4) | 0.048 (4)  | 0.001 (3)  | -0.006 (3) | 0.033 (4) |
| C11 | 0.062 (3) | 0.049 (3) | 0.071 (4)  | -0.006 (3) | 0.004 (3)  | 0.030 (3) |
| C12 | 0.097 (5) | 0.123 (6) | 0.097 (6)  | -0.009 (5) | 0.037 (4)  | 0.046 (5) |
| C13 | 0.108 (6) | 0.082 (5) | 0.203 (10) | 0.003 (5)  | -0.002 (6) | 0.091 (6) |
| C14 | 0.095 (5) | 0.075 (4) | 0.080 (5)  | -0.023 (4) | 0.001 (4)  | 0.027 (4) |
| O21 | 0.087 (3) | 0.089 (3) | 0.041 (2)  | 0.005 (2)  | 0.007 (2)  | 0.016 (2) |
| O22 | 0.063 (2) | 0.100 (3) | 0.093 (3)  | 0.014 (2)  | 0.004 (2)  | 0.048 (2) |
| O29 | 0.086 (3) | 0.082 (3) | 0.061 (3)  | -0.016 (2) | -0.014 (2) | 0.050 (3) |
| O30 | 0.063 (2) | 0.063 (3) | 0.053 (3)  | -0.010 (2) | -0.002 (2) | 0.031 (2) |
| N28 | 0.060 (3) | 0.053 (3) | 0.050 (3)  | -0.008 (2) | -0.006 (2) | 0.029 (2) |
| C22 | 0.056 (4) | 0.089 (5) | 0.065 (4)  | 0.012 (3)  | 0.008 (3)  | 0.050 (4) |
| C23 | 0.042 (3) | 0.061 (4) | 0.058 (4)  | 0.002 (3)  | 0.006 (3)  | 0.035 (3) |
| C24 | 0.060 (3) | 0.082 (4) | 0.054 (4)  | 0.007 (3)  | 0.011 (3)  | 0.019 (3) |
| C25 | 0.059 (3) | 0.064 (4) | 0.055 (4)  | 0.008 (3)  | 0.013 (3)  | 0.032 (3) |
| C26 | 0.077 (4) | 0.064 (4) | 0.070 (4)  | 0.011 (3)  | 0.014 (3)  | 0.043 (3) |
| C27 | 0.094 (5) | 0.094 (5) | 0.077 (5)  | 0.032 (4)  | 0.018 (3)  | 0.031 (4) |
| C28 | 0.123 (6) | 0.074 (5) | 0.112 (6)  | -0.001 (4) | 0.029 (4)  | 0.044 (4) |
| C29 | 0.056 (4) | 0.047 (4) | 0.055 (4)  | -0.001 (3) | -0.002 (3) | 0.027 (4) |
| C31 | 0.047 (3) | 0.072 (4) | 0.067 (4)  | -0.003 (3) | 0.008 (3)  | 0.035 (4) |
| C32 | 0.078 (5) | 0.151 (7) | 0.086 (5)  | 0.010 (5)  | 0.029 (4)  | 0.050 (5) |
| C33 | 0.084 (4) | 0.090 (5) | 0.157 (7)  | 0.000 (4)  | -0.012 (5) | 0.082 (5) |
|     |           |           |            |            |            |           |

| C34             | 0.066 (4)     | 0.085 (5)  | 0.083 (5) | -0.013 (4) | -0.002 (4) | 0.017 (4)  |
|-----------------|---------------|------------|-----------|------------|------------|------------|
| Geometric parar | neters (Å, °) |            |           |            |            |            |
| 01—C2           |               | 1 333 (11) | C12—      | H12A       |            | 0.96       |
| 01 - C4         |               | 1 461 (9)  | C12       | H12B       |            | 0.96       |
| 02-C2           |               | 1 189 (12) | C12—      | H12C       |            | 0.96       |
| 09              |               | 1.228 (8)  | C13—      | H13B       |            | 0.96       |
| 010—С9          |               | 1.319 (7)  | C13—      | H13A       |            | 0.96       |
| 010—C11         |               | 1.465 (8)  | C13—      | H13C       |            | 0.96       |
| O21—C22         |               | 1.350 (8)  | C14—      | H14B       |            | 0.96       |
| O21—C24         |               | 1.460 (7)  | C14—      | H14C       |            | 0.96       |
| O22—C22         |               | 1.182 (8)  | C14—      | H14A       |            | 0.96       |
| O29—C29         |               | 1.206 (8)  | C22—      | ·C23       |            | 1.518 (8)  |
| O30—C31         |               | 1.470 (8)  | C23—      | ·C24       |            | 1.565 (9)  |
| O30—C29         |               | 1.345 (7)  | C23—      | ·C25       |            | 1.520 (10) |
| N8—C3           |               | 1.443 (7)  | C25—      | C26        |            | 1.526 (9)  |
| N8—C9           |               | 1.336 (9)  | C26—      | ·C27       |            | 1.512 (9)  |
| N8—H8           |               | 0.8600     | C26—      | ·C28       |            | 1.527 (11) |
| N28—C23         |               | 1.422 (8)  | C31—      | ·C33       |            | 1.481 (12) |
| N28—C29         |               | 1.353 (9)  | C31—      | C34        |            | 1.530 (9)  |
| N28—H28         |               | 0.8600     | C31—      | ·C32       |            | 1.495 (10) |
| С2—С3           |               | 1.499 (10) | C24—      | H24A       |            | 0.97       |
| C3—C5           |               | 1.531 (10) | C24—      | H24B       |            | 0.97       |
| C3—C4           |               | 1.560 (8)  | C25—      | H25A       |            | 0.97       |
| C5—C6           |               | 1.530 (9)  | C25—      | H25B       |            | 0.97       |
| C6—C8           |               | 1.524 (11) | C26—      | ·H26       |            | 0.98       |
| С6—С7           |               | 1.504 (10) | C27—      | H27A       |            | 0.96       |
| C11—C14         |               | 1.497 (9)  | C27—      | H27B       |            | 0.96       |
| C11—C13         |               | 1.508 (12) | C27—      | H27C       |            | 0.96       |
| C11—C12         |               | 1.525 (10) | C28—      | H28A       |            | 0.96       |
| C4—H4B          |               | 0.97       | C28—      | H28B       |            | 0.96       |
| C4—H4A          |               | 0.97       | C28—      | H28C       |            | 0.96       |
| C5—H5B          |               | 0.97       | C32—      | H32A       |            | 0.96       |
| C5—H5A          |               | 0.97       | C32—      | H32B       |            | 0.96       |
| С6—Н6           |               | 0.98       | C32—      | H32C       |            | 0.96       |
| C7—H7A          |               | 0.96       | C33—      | H33A       |            | 0.96       |
| С7—Н7С          |               | 0.96       | C33—      | H33B       |            | 0.96       |
| С7—Н7В          |               | 0.96       | C33—      | H33C       |            | 0.96       |
| C8—H8B          |               | 0.96       | C34—      | H34A       |            | 0.96       |
| C8—H8C          |               | 0.96       | C34—      | H34B       |            | 0.96       |
| C8—H8A          |               | 0.96       | C34—      | H34C       |            | 0.96       |
| C2—O1—C4        |               | 92.1 (5)   | H14A-     |            |            | 109        |
| С9—О10—С11      |               | 122.9 (5)  | C11—      | C14—H14A   |            | 109        |
| C22—O21—C24     |               | 91.9 (4)   | H14B-     |            |            | 110        |
| C29—O30—C31     |               | 121.5 (4)  | C11—      | C14—H14B   |            | 110        |
| C3—N8—C9        |               | 125.5 (5)  | C11—      | C14—H14C   |            | 109        |
| C3—N8—H8        |               | 117        | O21—      | -C22—O22   |            | 125.3 (6)  |
| C9—N8—H8        |               | 117        | O22—      | -C22—C23   |            | 139.1 (6)  |

| C23—N28—C29 | 126.8 (5) | O21—C22—C23   | 95.6 (5)  |
|-------------|-----------|---------------|-----------|
| C23—N28—H28 | 117       | N28—C23—C24   | 116.9 (6) |
| C29—N28—H28 | 117       | N28—C23—C22   | 118.4 (5) |
| O1—C2—C3    | 96.4 (7)  | C22—C23—C25   | 114.2 (6) |
| O1—C2—O2    | 126.8 (7) | N28—C23—C25   | 111.0 (5) |
| O2—C2—C3    | 136.8 (8) | C22—C23—C24   | 81.9 (5)  |
| N8—C3—C4    | 119.1 (5) | C24—C23—C25   | 111.6 (5) |
| C2—C3—C5    | 110.7 (5) | O21—C24—C23   | 89.3 (4)  |
| N8—C3—C5    | 109.9 (5) | C23—C25—C26   | 118.8 (5) |
| N8—C3—C2    | 117.4 (6) | C25—C26—C28   | 109.3 (5) |
| C4—C3—C5    | 115.0 (6) | C25—C26—C27   | 114.1 (5) |
| C2—C3—C4    | 82.3 (5)  | C27—C26—C28   | 110.6 (6) |
| O1—C4—C3    | 88.8 (5)  | O29—C29—N28   | 124.3 (6) |
| C3—C5—C6    | 116.7 (5) | O29—C29—O30   | 125.2 (6) |
| C5—C6—C8    | 107.9 (6) | O30—C29—N28   | 110.5 (5) |
| C7—C6—C8    | 111.0 (6) | O30—C31—C33   | 110.2 (5) |
| C5—C6—C7    | 113.8 (5) | O30—C31—C34   | 101.3 (5) |
| O9—C9—O10   | 124.5 (6) | C32—C31—C34   | 110.5 (5) |
| O9—C9—N8    | 122.8 (6) | C33—C31—C34   | 110.5 (6) |
| O10-C9-N8   | 112.8 (5) | C32—C31—C33   | 114.9 (7) |
| C12-C11-C14 | 109.6 (5) | O30—C31—C32   | 108.6 (6) |
| O10-C11-C14 | 103.5 (5) | O21—C24—H24A  | 114       |
| C12—C11—C13 | 112.7 (6) | O21—C24—H24B  | 114       |
| C13—C11—C14 | 112.1 (7) | C23—C24—H24A  | 114       |
| O10-C11-C13 | 110.6 (5) | C23—C24—H24B  | 114       |
| O10-C11-C12 | 107.8 (6) | H24A—C24—H24B | 111       |
| C3—C4—H4A   | 114       | С23—С25—Н25А  | 108       |
| C3—C4—H4B   | 114       | С23—С25—Н25В  | 108       |
| O1—C4—H4B   | 114       | С26—С25—Н25А  | 108       |
| O1—C4—H4A   | 114       | С26—С25—Н25В  | 108       |
| H4A—C4—H4B  | 111       | H25A—C25—H25B | 107       |
| H5A—C5—H5B  | 107       | С25—С26—Н26   | 107       |
| С6—С5—Н5В   | 108       | С27—С26—Н26   | 108       |
| С3—С5—Н5А   | 108       | C28—C26—H26   | 108       |
| С6—С5—Н5А   | 108       | С26—С27—Н27А  | 110       |
| С3—С5—Н5В   | 108       | С26—С27—Н27В  | 109       |
| С7—С6—Н6    | 108       | С26—С27—Н27С  | 109       |
| С8—С6—Н6    | 108       | H27A—C27—H27B | 110       |
| С5—С6—Н6    | 108       | H27A—C27—H27C | 109       |
| С6—С7—Н7С   | 109       | H27B—C27—H27C | 109       |
| С6—С7—Н7А   | 110       | C26—C28—H28A  | 109       |
| H7A—C7—H7B  | 109       | C26—C28—H28B  | 109       |
| Н7В—С7—Н7С  | 109       | C26—C28—H28C  | 109       |
| H7A—C7—H7C  | 110       | H28A—C28—H28B | 109       |
| С6—С7—Н7В   | 109       | H28A—C28—H28C | 110       |
| С6—С8—Н8А   | 109       | H28B—C28—H28C | 109       |
| C6—C8—H8B   | 109       | C31—C32—H32A  | 109       |
| H8B—C8—H8C  | 110       | C31—C32—H32B  | 109       |
| H8A—C8—H8B  | 109       | C31—C32—H32C  | 109       |

| С6—С8—Н8С       | 109        | H32A—C32—H32B   | 110        |
|-----------------|------------|-----------------|------------|
| H8A—C8—H8C      | 109        | H32A—C32—H32C   | 110        |
| C11—C12—H12B    | 110        | H32B—C32—H32C   | 109        |
| C11—C12—H12C    | 110        | С31—С33—Н33А    | 110        |
| C11—C12—H12A    | 109        | С31—С33—Н33В    | 109        |
| H12A—C12—H12B   | 109        | С31—С33—Н33С    | 109        |
| H12A—C12—H12C   | 109        | H33A—C33—H33B   | 109        |
| H12B—C12—H12C   | 109        | H33A—C33—H33C   | 109        |
| C11—C13—H13C    | 109        | H33B—C33—H33C   | 109        |
| H13A—C13—H13B   | 109        | C31—C34—H34A    | 110        |
| H13A—C13—H13C   | 109        | C31—C34—H34B    | 109        |
| C11—C13—H13B    | 109        | C31—C34—H34C    | 109        |
| H13B—C13—H13C   | 109        | H34A—C34—H34B   | 109        |
| C11—C13—H13A    | 109        | H34A—C34—H34C   | 109        |
| H14A—C14—H14C   | 109        | H34B—C34—H34C   | 109        |
| C4—O1—C2—O2     | -176.6 (9) | O1—C2—C3—C5     | 109.5 (6)  |
| C4—O1—C2—C3     | 4.7 (6)    | O2—C2—C3—C5     | -69.0 (12) |
| C2—O1—C4—C3     | -4.5 (6)   | O1—C2—C3—N8     | -123.3 (6) |
| C11—O10—C9—O9   | -8.8 (9)   | O2—C2—C3—C4     | 177.1 (11) |
| C11—O10—C9—N8   | 172.5 (5)  | O2—C2—C3—N8     | 58.2 (13)  |
| C9—O10—C11—C12  | -62.4 (7)  | N8—C3—C5—C6     | 56.6 (7)   |
| C9—O10—C11—C13  | 61.2 (8)   | C4—C3—C5—C6     | -81.1 (7)  |
| C9—O10—C11—C14  | -178.5 (5) | C2—C3—C5—C6     | -172.2 (6) |
| C22-O21-C24-C23 | -8.8 (5)   | N8—C3—C4—O1     | 121.1 (6)  |
| C24—O21—C22—O22 | -172.7 (8) | C2—C3—C4—O1     | 4.0 (5)    |
| C24—O21—C22—C23 | 9.1 (6)    | C5-C3-C4-O1     | -105.3 (6) |
| C31—O30—C29—O29 | 8.2 (9)    | C3—C5—C6—C8     | 177.1 (6)  |
| C31—O30—C29—N28 | -170.7 (5) | C3—C5—C6—C7     | 53.4 (8)   |
| C29—O30—C31—C32 | 61.1 (7)   | O22—C22—C23—C24 | 173.7 (11) |
| C29—O30—C31—C33 | -65.5 (7)  | O22—C22—C23—C25 | -76.2 (12) |
| C29—O30—C31—C34 | 177.5 (5)  | O21—C22—C23—N28 | -124.8 (6) |
| C9—N8—C3—C2     | 47.2 (8)   | O21—C22—C23—C24 | -8.6 (5)   |
| C3—N8—C9—O9     | -177.5 (5) | O21—C22—C23—C25 | 101.5 (6)  |
| C3—N8—C9—O10    | 1.3 (8)    | O22—C22—C23—N28 | 57.4 (14)  |
| C9—N8—C3—C4     | -49.5 (9)  | N28-C23-C24-O21 | 125.8 (5)  |
| C9—N8—C3—C5     | 174.8 (5)  | N28—C23—C25—C26 | -51.2 (7)  |
| C29—N28—C23—C25 | 172.4 (5)  | C22—C23—C25—C26 | 85.9 (7)   |
| C23—N28—C29—O30 | -0.8 (8)   | C24—C23—C25—C26 | 176.6 (5)  |
| C29—N28—C23—C24 | -58.1 (7)  | C25—C23—C24—O21 | -105.0 (5) |
| C23—N28—C29—O29 | -179.6 (6) | C22—C23—C24—O21 | 7.9 (5)    |
| C29—N28—C23—C22 | 37.4 (9)   | C23—C25—C26—C28 | 177.8 (6)  |
| O1—C2—C3—C4     | -4.4 (6)   | C23—C25—C26—C27 | -57.9 (8)  |
|                 |            |                 |            |

### Hydrogen-bond geometry (Å, °)

| D—H···A     | <i>D</i> —Н | H…A  | $D \cdots A$ | D—H··· $A$ |
|-------------|-------------|------|--------------|------------|
| N8—H8…O29   | 0.86        | 2.12 | 2.937 (6)    | 158        |
| N28—H28…O9  | 0.86        | 2.06 | 2.890 (6)    | 162        |
| С12—Н12С…О9 | 0.96        | 2.55 | 3.049 (9)    | 112        |

| С13—Н13А…О9  | 0.96 | 2.36 | 2.941 (11) | 118 |
|--------------|------|------|------------|-----|
| С27—Н27С…О22 | 0.96 | 2.53 | 3.209 (9)  | 127 |
| С32—Н32С…О29 | 0.96 | 2.44 | 3.018 (9)  | 119 |





